PERCEPTUAL ORGANIZATION
AND THE REPRESENTATION OF
NATURAL FORM

Technical Note No. 357 (Revised)

July 29, 1986

By: Alex P. Pentland, Computer Scientist

Artificial Intelligence Center
Computer Science and Technology Division

| Internafional

e | iy
L7 T NNN
SRI 333 Ravenswood Ave. ¢ Menlo Park, CA 94025
International (4157 326-6200 « TWX: 910-373-2046 » Telex: 334-486
SRS,

N Pz ®



Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
29 JUL 1986 2. REPORT TYPE 00-07-1986 to 00-07-1986
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Per ceptual Organization and the Representation of Natural Form £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

SRI International,333 Ravenswood Avenue,Menlo Park,CA,94025 REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a. REPORT b. ABSTRACT c. THISPAGE 42
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18



ARTIFICIAL INTELLIGENCE 293

Perceptual Organization and the
Representation of Natural Form

Alex P. Pentland

Artificial Intelligence Center, SRI International,

333 Ravenswood Ave, Menlo Park, CA 94025, U.S.A.
Center for the Study of Language and Information,
Stanford University, Stanford, CA 94038, U.S.A.

Recommended by Daniel G. Bobrow and Pat Hayes

ABSTRACT

To support our reasoning abilities perception must recover environmental regularities—e.g., rigidity,
“objectness,”” axes of symmetry—for later use by cognition. To create a theory of how our perceptual
apparatus can produce meaningful cognitive primitives from an array of image intensities we require a
representation whose elements may be lawfully related to important physical regularities, and that
correctly describes the perceptual organization people impose on the stimulus. Unfortunately, the
representations that are currently available were originally developed for other purposes (e.g., physics,
engineering) and have so far proven unsuitable for the problems of perception or common-sense
reasoning. In answer to this problem we present a representation that has proven competent to
accurately describe an extensive variety of natural forms (e.g., people, mountains, clouds, trees), as
well as man-made forms, in a succinct and natural manner. The approach taken in this represen-
tational system is to describe scene structure at a scale that is similar to our naive perceptual notion of
“a part," by use of descriptions that reflect a possible formative history of the object, e.g., how the
object might have been constructed from lumps of clay. For this representation to be useful it must be
possible to recover such descriptions from image data; we show that the primitive elements of such
descriptions may be recovered in an cverconstrained and therefore refiable manner. We believe that
this descriptive system makes an important contribution towards solving current problems in perceiving
and reasoning about natural forms by allowing us to construct accurate descriptions that are extremely
compact and that capture people's intuitive notions about the part siructure of three-dimensional
forms.

1. Introduction

Our world is very highly structured: evolution repeats its solutions whenever
possible [1], and inanimate forms are constrained by physical laws to a limited
number of basic patterns {2]. The apparent complexity of our environment is
produced from this limited vocabulary by compounding these basic forms in
myriad different combinations. Indeed, the highly patterned nature of our
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environment is a necessary precondition for intelligenice; for if the apparent
complexity of our environment were approximately the same as its intrinsic
(Kolmogorov) complexity, then intelligent prediction and planning would be
impossible, for there would be no lawful relations. It is this internal structuring
of our environment, then, that causes object features to cluster into groups,
and allows us to reason successfully using the simplified category descriptions
that we typically employ [3].

To support our reasoning abilities, therefore, perception must recover these
environmental regularities—e.g., rigidity, “objectness,”’ axes of symmetry—for
later use in cognitive processes. This recovery of structure is known as
perceptual organization, familiar from such research efforts as the Gestalt
movement [4], Johansson’s [5] study of the organization of motion perception,
and more recently Marr and Nishihara’s [6, 7] theory of form perception using
a description based on generalized cylinders [8]. The problem of perceptual
organization is important because the structural regularities that perception
recovers are the parts from which we construct our picture of the world; they
are the building blocks of all cognitive activities.

FiG. 1. A scene described and generated by the representational system described within: tree
leaves and bark, rocks and hair are fractal surfaces, the overall shape is described by Boolean
combination of appropriately deformed superquadrics. Only 56 primitives are required {fewcr than
500 bytes of information) to specify this scene. The slightly cartoon-like appearance is primarily
due to the lack of surface texturing.
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In this paper we will approach the problem of visual perceptual organization
in a manner similar to Gibson [9] or Marr [10]: we want to construct a theory
of how our perceptual concepts—shape, objectncss, and the like—are lawfully
refated to the regularities (structure) in our environment. Like Marr, but unlike
Gibson, we desire a computational theory: onc that details how the physical
regularities of our world allow the computation of meaningful descriptions of
our surroundings by use of image data. Further, we want these descriptions to
match the perceptual organization we impose on the stimulus—the one stiuc-
turing of the stimulus that we know can support gencral-purpose cognitive
activity. That is, we want a theory that both dctails how meaningful assertions
can be derived from image data and accounts for human perceptual charac-
teristics.

The core of any such theory must be a representation that is isomorphic to
our perceptual organization, and whose clements can be computed from the
unstructured array of image intensities. Unfortunatcly, the representations that
are currently available were originally developed for other purposes (e.g., the
pointwise descriptions of physics or the platonic-solids descriptions of
engineering) and are therefore often unsuitable for the problems of perception.

Most current-day vision research, for instance, is based on the pointwise
representation used in describing the physics of image formation, and con-
sequently research has focused on analyzing image content on a local, point-by-
point basis. Biological visual systems, however, can not recover scene structure
from such local information.' In fact, biological visual systems are strikingly
insensitive to the point-by-point particulars of the image-formation process
(e.g., reflectance function or illuminant direction), factors that figure prom-
inently in today’s best vision research.

Rather than depending only upon pointwise information, people seem to
make heavy use of the larger-scale structure of the scenc in order to guide their
perceptual interpretation. Similarly, the performance of most current-day
vision algorithms depends critically upon assumed larger-scale structural con-
text, e.g., upon assuming smoothness or isotropy. To progress towards general-
purpose vision, therefore, we need new representations capable of describing
these critical larger-scale structures; the “parts’ or “building blocks™ that we
use to organize the image and provide a framework for perceptual inter-
pretation.

Towards this end Marr and Nishihara [6] proposed a scheme using hierar-
chies of cylinder-like modeling primitives to describe natural forms. Their
proposal is, it seems, the most widely known representation suggested to date;
it captures many of our intuitions about axes of symmetry and hierarchical
description (see also [11-14]). Further, in recent years rcpresentations like

' As you can confirm for yourself by looking through a long, one-inch wide tube such as found in
rolls of wrapping paper.
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FiG. 2. Marr and Nishihara’s scheme for the description of biclogical form.

theirs have found considerable success in industrial-style machine-vision sys-
tems where an exact model of the specific objects that are to be discovered in
the image data is available {15, 16]. Unfortunately, such a representation is only
capable of an extremely abstracted description of most natural and biological
forms, as is illustrated in Fig. 2. It cannot accurately and succinctly® describe
most natural animate forms or produce a succinct description of complex
inanimate forms such as clouds or mountains.

In this paper we will present a representational system that has proven
competent to accurately describe an extensive variety of natural forms (e.g.,
people, mountains, clouds, trees), as well as man-made forms, in a succinct and
natural manner. Fig. 1 shows an example of a scene described in this represen-
tation; only 56 descriptive “parts” (about 500 bytes of information) were
employed. We will then present evidence that we can use the special properties
of this representational system to recover descriptions of specific objects from
image data, and finally we will argue that these recovered descriptions are
extremely useful in supporting both common-sensec reasoning and man-—
machine communication.

21f we retreat from cylinders to generalized cylinders we can, of course, describe such shapes
accurately. The cost of such retreat is that we must introduce a 1-D (at least) function describing
the sweeping function; which makes the representation neither succinct nor intuitively attractive.
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2. Vision, Cognition, and Models of Scene Structure

Perception is the mind’s window on the world: its task is to recognize and
report objects and relations that are important to the organism. It is this
perceptual link between the objective environment and our conception of the
environment that makes our thoughts meaningful; it ensures that they have
some correspondence with the surrounding world.

Because the objects and relations recovered by perception are the primitives
upon which all cognition is built, the particular way in which our perceptual
apparatus organizes sensory data—that is, which regularities are noted and
which are ignored—places strong constraints on the ways in which we can think
about our environment. When perception organizes the sensory data in a way
unsuited to the current task even simple problems can become nearly im-
possible to solve, as is illustrated by problems where you “see’ the solution
only when you ““look’ at them in the right way.

Identifying important environmental regularities and relating them to the
primitive elements of cognition is, therefore, crucial to an understanding of
cognitive function, and has consequently become the principal goal of research
into visual function [9, 10]. The central problem in such research is, of course,
that the sensory data underdetermines the scene structure. Image pixels, by
themselves, can determine nothing. Some model of image formation and
environmental structure is required in order to obtain any assertion about the
viewed scene. '

To construct a theory relating cognitive primitives to environmental struc-
ture, therefore, we must view visual perception as the process of recognizing
image regularities that are known—on the basis of one’s model of the world—
to be reliably and lawfully related to cognitive primitives. The need for a model
cannot be sidestepped, for it is the model that relates the theory’s represen-
tations and computations to the state of the real world, and thus expiains the
semantics—the meaning—of the theory. A theory of visual function that has
no model of the world also has no meaning.’

Understanding the early stages of perception as the interpretation of sensory
data by use of models (knowledge) of the world has, of course, become a
standard vision research paradigm. To date, however, most models have been
of two kinds: high-level, specific models, e.g., of pcople or houses, and

3 Theories of visual function, therefore, are based on models: models of how the world is
structured and of how this structure is evidenced by regularitics in the tmage. Much vision rescarch
is nof model-based, of course: research on the mechanisms of vision (e.g., parallel processors,
neurons), or on procedures for aceomplishing visual tasks (c.g., variational calculus, relaxation
methods) need not employ models of the world. But to understand visual funcion—that is, how
one ean infer information about the world—it is necessary to have a model of the salient world
structure and of how that structure evidences itself in the image. Only then can one understand
how certain features of the image can allow recognition and recovery of the information of interest.
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low-level models of image formation, e.g., of edges. The reason research has
almost exclusively focused on these two types of model is a result more of
historical accident than concious decision. The well-developed fields of optics,
material science and physics (especially photometry) have provided well wor-
ked-out and easily adaptable models of image formation, while engineering,
especially recent work in computer-aided design, have provided standard ways
of modeling industrial parts, airplanes and so forth.

Both the use of image-formation models and specialized models has been
thoroughly investigated. It appears to us that both types of models, although
useful for many applications, encounter insuperable dilliculties when applied to
the problems faced by, for instance, a general-purpose robot. In the next two
subsections we will examine both types of models and outline their advantages
and disadvantages for recovering important scene information. In the remain-
der of this section we will then motivate, develop and investigate an alternative
category of models.

2.1. Model of image formation

Most recent research in computational vision has focused on using pointwise
models of image formation borrowed from optics, material science and physics.
This research has been pursued within the general framework originally
suggested by Marr [10] and by Barrow and Tenenbaum [17], in which vision
proceeds through a succession of levels of representation. The initial level is
computed directly from local image featurcs, and higher levels are then
computed from the information contained in small regions of the preceding
levels. Processing is primarily data-driven (i.e., bottom-up).

In Marr’s scheme the initial level is called the ‘“‘raw primal sketch,” and
contains a description of significant local image structure, e.g., edges, lines, or
flowfield vectors, represented in the form of an array of feature descriptors that
preserves the local two-dimensional geometry of the image. The second level is
called the “23-D sketch,” and is intended to describe local surface properties
(e.g., color, orientation) and discontinuities in a viewer-centered coordinate
frame. Again, the recovered local surface properties are placed in a set of
numeric arrays in registration with original image. From this point an object-
centered, volumetric representation was to be computed, such as is illustrated
by Fig. 2. The rationale for this level of representation is that tasks such as
navigation or object recognition seem to require description in a vicwpoint-
independent coordinate frame.

Despite its prevalence, there are serious problems that seem to be inherent
to this research paradigm. Because scene structure is underdetermined by the
local image data [18], researchers have been forced to make unverifiable
assumptions about large-scale structure (e.g., smoothness, isotropy) in order to
derive useful information from their local analyses of the image. In the real
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world, unfortunately, such assumptions are often seriously in error: in natural
scenes the image-formation parameters change in fairly arbitrary ways from
point to point, making any assumption about local context quite doubtful. As a
result, those techniques that rely on strong assumptions such as isotropy or
smoothness have proved fragile and error-prone; they are simply not useful for
many natural scenes (for a more extended discussion see Witkin and Tenebaum
[19)).

That such difficulties have been encountered should not, perhaps, be too
surprising. It is easily demonstrated (by looking through a viewing or reduction
tube) that people can obtain little information about the world from a local
image patch taken out of its context. It is also clear that detailed, analytic
models of the image-formation process are not essential to human perception;
humans function quite well with range finder images (where brightness is
proportional to distance rather than a function of surface orientation), electron-
microscope images (which are approximately the reverse of normal images),
and distorted and noisy images of all kinds—not to mention paintings and
drawings.

Perhaps even more fundamentally, however, even if depth maps and other
maps of intrinsic surface properties could be reliably and densely computed,
how useful would they be? As Witkin and Tenenbaum point out, industrial
vision work [16] using laser range data has demonstrated that the depth maps,
reflectance maps and the other maps of the 23-D sketch are still basicaily just
images. Although useful for obstacle avoidance and other very simple tasks,
they still must be segmented, interpreted and so forth before they can be used
for any more sophisticated task. The conclusion to be drawn from such work is
that image-like measurements of range and other surface properties contribute
incrementally, in much the same way as color: they add a dimension that
simplifies some decisions, but they do not solve the diflicult problems encoun-
tered in image interpretation.

2.2, Specialized models

The alternative to models of image formation has been enginecring-style
representations; e.g., CAD-CAM models of specific objects that are to be
identified and located. Such detailed, specific models evidence themselves in
image data in an extremely complex manner, in part because the models
themselves are often complex, but more importantly because it is the object’s
surface shape, and not the appearance of the object, thal is described. As the
object’s orientation varies, therefore, these models produce a wvery large
number of different pixel configurations—to say nothing of what happens when
we vary the illumination and imaging conditions. As a consequence, the image
regularities that allow reliable recognition across all of the allowable
configurations are very subtie and complex.
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The large number of possible appearances for such models makes the
problem of recognizing them very difficult—unless an extremely simpiified
representation is employed. The most common type of simplified represen-
tation is that of a wireframe model whose components correspond to the
imaged edges. Such a simplied represcntation permits reliable recognition of
models with currently available computational resources, given that we are in a
restricted environment where the descriptive power of such wireframe models
is sufficient, e.g., as in industrial applications. As a result systems based on
CAD-like models of specific objects have provided most of the success stories
in machine vision.

Despite this success, the use of an impoverished representation generally
means that the flexibility, reliability and discriminability of thc recognition
process is limited. Thus research efforts employing specific object models have
floundered whenever the number of objects to be recognized becomes large,
when the objects may be largely obscured, or when there are many unknown
objects aiso present in the scene.

An even more substantive limitation of systems that employ onfy high-level,
specific models is that there is no way to learn new fypes of objects: new model
types must be specially entered, usually by hand, into the database of known
models. This is a significant limitation, because the ability to encounter a new
type of object, enter it into a catalog of known objects, and thereafter
recognize it is an absolute requirement of truly general-purpose vision.

2.3. Part and process models

Some sort of additional constraint is required to oversome the fundamental
problem of insufficient information being available from the image. I
sufficient constraint is not available from models of image formation, then
from where? Human vision seems to function quite well as long as the imaging
process preserves the basic spatial structure of the scene. It seems, therefore,
that human perception must be exploiting constraints provided by the structure
of the scene without reliance on quantitative, pointwisc models of the image-
formation process. What is required, then, arc models of scene structure that
capture something about the larger-scale structurc of our environment. We
cannot, however, appeal to CAD-like models of specific objects because of the
impossibility of learning new descriptions.

[n response to these seemingly intractable problems some researchers have
begun to search for a third type of model, one with a grain size intermediate
between the pointwise models of image formation and the complex, specific
models of particular objects (sce [20]). There is good reason to believe that it
may be possible to accurately describe our world by means of such inter-
mediate-grain models; that world can be modeled as a rclatively small set of
generic processes that occur again and again, with the apparent complexity of
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our environment being produced from this limited vocabulary by compounding
these basic forms in myriad different combinations.

We have known for over a century that evolution repeats its solutions
whenever possible [1], resulting in great regularitics across all specics: there are
but a few types of limb, a few types of skin, a few types of leaf, and a few
patterns of branching. An amazingly good model of a tree, for instance, is the
composition of a simple branching process with three-dimensional texture
processes for generating bark and leaves [21]; the same branching models can
also serve for rivers, veins, or coral. Similarly, it is now bcing discovered that
inanimate forms may also be constrained by physical laws to a limited number
of basic patterns [2,22]. Mandelbrot has shown that such apparently complex
forms such as clouds, hills, coastlines or cheese can all be described by simple
patterns recursively repeated at all different scales [22], while Stevens presents
strong evidence that natural textures occur in but a few basic forms [2].

It is this internal structuring in our environment that allows us to derive
lawful relationships [23].* It is exactly this internal structuring of our environ-
ment that causes object features to cluster into groups, and thus allows us to
successfully employ simplified category descriptions for common-sense rcason-
ing [3].

It appears, then, that it may be possible to accuratcly model the world in
terms of parts: macroscopic models that, in relatively simple combination, can
be used to form rough-and-ready models of the objects in our world and how
they behave. If we adopt this view, then the central problem of perception
research is not Marr’s scheme of successively describing images, surfaces, and
volumes, with the hope that we willi eventually arrive at recognition of
high-level models [10]. Rather, the central problem for perception is to find a
set of generically applicable part models, discover image regularities that are
lawfully associated with the individual parts, and then use these regularities to
recognize the content of an image as a combination of these generic primitives.
This new proposal, then, is that our theory of perception can dispense entirely
with these initial stages of description and begin immediately with recognition
of part models: models that are in principle much like models of houses and
chairs, but that are more generally applicable and less detailed.

Because such models would be simpler than models of specific objects we
would expect that we could more readily characterize how they would appcar
in an image. On the other hand, because they describe larger-scale structure
than pointwise models of image formation, we would expect that they might
not suffer from the problems of underdeterminationthat have forced re-
searchers to make unrealistically strong assumptions such as smoothness or
isotropy. Besides offering a good balance between complexity and reliability, such

‘¥ the apparent complexity of our environment were equal to its intrinsic Kolmogorov
complexity, then no lawful relationships would be possible.
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intermediate-grain part models spark considerable intercst because they des-
cribe the world in the right terms: they speak qualitatively of whole objects and
of relations between objects, rather than of local surface patches or of specific
objects. Thus, they can potentially provide a vocabulary for describing the
world at the grain size that is most often directly useful to us.

The problem with forming such “part” models is that they must be complex
enough to be reliably recognizable, and yet simple enough to reasonably serve
as building blocks for specific object models. Current 3-D machine-vision
systems, for instance, typically use rectangular solids and cylinders to model
specific shapes. Using these primitives for the automatic construction of a
description for an arbitrary new object has not proven possibie, except® (as in
industrial or urban imagery) when the set of objects that will be encountered is
constrained to be simple combinations of rectangular solids or cylinders [24].
To support truly general-purpose vision, thercfore, we need to develop new
modeling primitives that can be used to build descriptions of arbitrary objects
and that are recognizable in standard imagery. Our work towards this goal is
the subject of the remainder of this paper.

3. A Representation for Natural Forms

We present here a representational system that has been proven competent to
accurately describe an extensive variety of natural forms (e.g., people, moun-
tains, clouds, trees), as well as man-made forms, in a succinct and natural
manner (see Fig. 1). The idea behind this representational system is to provide
a vocabulary of models and operations that will allow us to model our world as
the relatively simple composition of component “parts,” parts that are reliably
recognizable from image data.

The most primitive notion in this representation may be thought of as a
“lump of clay,” a modeling primitive that may be decformed and shaped, but
which is intended to correspond roughly to our naive perceptual notion of “a
part.” It is worth noting that this notion of “part” agrees with that used by
Konderink and Van Doorn [25, 26] or by Hofliman and Richards [27] in their
analysis of how part boundaries impose constraints upon three-dimensional
surfaces, aithough they did not actually proposc a model of what constitutes a
three-dimensional *“‘part.” For this basic modeling element we use a
parameterized family of shapes known as a superquadrics [28,29], which are
d‘escribed (adopting the notation cos 7 = C,, sin w = §,} by the following equa-
tion:

5 A caveat should be noted with respecl to laser range hinders and the like: in some cascs the
thousands of range measurements provided by these active sensors can give enough additional
constraint to allow recovery of low-level, polygon-like descriptions of novel objects.
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Fig. 3. (a) A sampling of the basic forms allowed. (b) Deformations of these forms. () Boolean
combination (ors and nots) of the basic forms.

C:lC:I
X(n,w)=| cS? |,
S

where X(n, w) is a three-dimensional vector that sweeps out a surface
parameterized in latitude » and longitude w, with the surface’s shapc con-
trolled by the parameters g, and &,. This family of functions includes cubes,
cylinders, spheres, diamonds and pyramidal shapes as well as the round-edged
shapes intermediate between these standard shapes. Some of these shapes are
illustrated in Fig. 3(a). Superquadrics are, therefore, a superset of the modeling
primitives currently in common use.
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These basic “lumps of clay™ (with various symmetries and profiles) are used
as prototypes that are then deformed by stretching, bending, twisting or
tapering, and then combined using Boolean operations to form new, complex
prototypes that may, recursively, again be subjected to deformation and
Boolean combination: As an example, the back of a chair is a rounded-edge
cube that has been flattened along one axis, and then bent somewhat to
accommodate the rounded human form. The bottom of the chair is a similar
object, but rotated 90°, and by “oring” these two parts together with
elongated rectangular primitives describing the chair legs we obtain a complete
description of the chair, as illustrated in Fig. 4.

This descriptive language is designed to describe shapes in a manner that
corresponds to a possible formative history, e.g., how one would create a given
shape by combining lumps of clay. Thus the description provides us with an
explanation of the image data in terms of the interaction of generic formative
processes. This primitive explanation can then be refined by application of
specific world knowledge and context, eventually deriving causal connections,
affordances, and all of the other information that makes our perceptual
experience appear so rich and varied. For instance, if we have parsed the chair
in Fig. 4 into its constituent parts we could deduce that the bottom of the chair
is a stable platform and thus might be useful as a seat, or we might hypothesize
that the back of the chair can rigidly move relative to the supporting rod, given
the evidence that they are separate “parts’” and thus likely separately formed.

FIG. 4. A chair formed from Boolean combinations of appropriately deformed superquadrics.
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The reader is encouraged to consider other examples of how the knowlcdge of
part structure can help in forming hypotheses about function.

We have found that by using such a process-orientcd, possible-history
representation we force the resulting descriptions to group points that have
similar causal histories, thus obtaining “parts’ that interact with the world in a
relatively simple, holistic manner. This further simplifies many reasoning tasks,
because the parameters and components that affect interactions tend to be
explicitly represented rather than being some complex or difficult-to-calculate
function of the description’s variables. For instance, use of this typc of
representation sufficiently simplfies questions about spatial relationships, inter-
section, image appearance, and so forth that we have been able to use it to
construct a real-time 3-D graphical modeling systcm, using a Symbolics 3600
computer.® This system, called “SuperSketch,” was used to make the figures in
this paper. . ’

Such descriptions may be written as a predicate calculus formula. We may
then use this description, which has a clear model-theoretic semantics, in
conjunction with constraint satisfaction or theorcm-proving mechanisms, to
accomplish whatever reasoning is required. Intcrestingly, it has been found that
when adult human subjects are required to verbally describe imagery with
completely novel content, their typical spontancous strategy is to employ a
descriptive system analogous to this one—i.e., form is described by modifying
and combining prototypes [30]. The classic work by Rosch [3] supports the
view that such a prototype-and-differences descriptive system is common in
human reasoning: she showed that even primitive New Guinea tribesmen (who
appear to have no concept of regular geometric shapes) form geometric
prototypes in much the same manner as people from other cultures and
describe novel shapes in terms of differences from these prototypes.

This representational system provides a grammar of form that has surprising
descriptive power. Such descriptions have the intuitively satisfying nature of
the Marr and Nishihara scheme; they incorporate hierarchies of primitives with
axes of symmetry. This new descriptive language, however, is considerably
more powerful than other representations that have been suggested. For
exampie, a trivial comparison is that we can describe a wider range of basic
shapes, as shown in Fig. 3(a). By allowing deformations of these shapes we
greatly expand the range of primitives allowed, as shown in Fig. 3(b) (see also
[31, 32, 42] on describing shape using modifications of prototypes). We have, so
far, required only stretching, bending, tapering and twisting deformations to
construct an extremely wide variety of objects. But the most powerful notion in

5 Real-time” in this case means that a “lump” can be moved, hidden-surface removal ac-
complished, and drawn as a t00-polygon line-drawing approximation in one eighth of a second, and
a complex (full-color) image such as Fig. 1 can be rendered in approximately 20 scconds. The
Symbolics speed is roughly comparable to a VAX 117780, except for being almost an order of
magnitude slower on the Aoating-point operations that are used heavily in this modeling system.
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this language is that of allowing (hierarchical) Boolean combination of these
primitives. This intuitively altractive constructive solid-modeling approach—
building specific object descriptions by applying the logical sct operations
“and,” “or,”” and “not” to component parts—introduces a language-like
generaltive power that allows the creation of a tremendous varicty of form, such
as is illustrated by Fig. 3(c) or by Fig. 1.

3.1. Biological forms

Biological forms such as the human body are naturally described by hicrar-
chical Boolean combinations of the basic primitives, allowing the construction
of accurate—but quite simple—descriptions of the detailed shape, as illustrated
by Fig. 5 (the slightly cartoon-like nature of these illustrations is duc primarily
to the lack of surface texturing). The entire human body shown in [Fig, 5,
including face and hands, requires combining only 40 primitives, or ap-
proximately 300 bytes of information (these informational requircments arc not
a function of body position). Similarly, the description for the face requires the
combination of only 13 primitives, or fewer than 100 bytes of information. The
extreme brevity of these descriptions makes many otherwise difficult reasoning
tasks relatively simple, e.g., even NP-complete problems can be casily solved
when the size of the problem is small enough.

Fici. 5. The human form described (and rendered) by use of this representational svsiem; only 40
primitives are required, approximately 300 bytes of information.
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In Fig. 5 (as in all cases examined to date) when we try to model a particular
3-D form we find that we are able to describe—indeed, we are almost forced to
describe—the shape in a manner that corresponds to the organization our
perceptual apparatus imposes upon the image. That is, the components of the
description match one-to-one with our naive perceptual notion of the “parts”
in the figure, e.g., the face in Fig. 5 is composed of primitives that correspond
exactly to the cheeks, chin, nose, forehead, ears, and so forth. Fig. 6 shows how
the face is formed from the Boolean sum of several different primitives. The
basic form for the head is a slightly tapered ellipsoid. To this basic form is

FIG. 6. (a) shows that the basic form for the head is a slightly tapered cllipsoid: 1o this basic lormn is
added a somewhat cubical nose, bent pancake-like primitives for ears, bent thin ellipsoicls for lips,
and almond-shaped eyes. (b) shows the addition of rounded cheeks and slightly pointed chin (is this
Yoda from Star Wars?), and finally (c) shows the addition of a squarish forehead and stightly
fractalized hair. The smoothly shaded result is shown in (d}—it is a rensonably accurate human
head, composed of only 13 primitives, specificd by slightly [ess than [0 bytes of information.
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added a somewhat cubical nose, bent pancake-like primitives for ears, bent thin
ellipsoids for lips, and almond-shaped eyes, as is shown in Fig. 6(a). Fig. 6(b)
shows the addition of rounded cheeks and a slightly pointed chin (is this Yoda
from Star Wars?), and finally Fig. 6(c} shows the addition of a squarish
forehead and slightly fractalized hair. The smoothly shaded result is shown in
Fig. 6(d)}—it is a reasonably accurate human head, composed of only I3
primitives, specified by slightly less than 100 bytes of information. One should.
remember that this representation is nof in any way tailored for describing the
human form: it is a general-purpose vocabulary.

The correspondence between the organization of descriptions made in this
representation and human perceptual organization is important becausc it is
strong evidence that we are on the right track. The fact that the distinctions
made in this representation are very similar to those made by people makes it
likely that descriptions couched in this language will be useful in understanding
common-sense reasoning tasks, e.g., that the vocabulary of this representation
might constitute a good set of primitive predicates [or theories of common-
sense reasoning such as sought by the Naive Physics |33] research program.’

Similarly, the ability to make the right “part™ distinctions offers hope that we
can form qualitative descriptions of specific objects (“Ted’s face™) or of classes
of objects (‘‘a long, thin face™) by specifying constraints on part parameters and
on refations between parts, in the manner of Marr and Nishihara [6,7], Winston
{46, 47] or Davis [48]. And, of course, such representational correspondence is
also important because it provides the basis for useful man-machine inter-
action.

3.2. Complex inanimate forms

This method for representing the three-dimensional world, although excellent
for biological and man-made forms, becomes awkward when applied to com-
plex natural surfaces such as mountains or clouds. The most pronounced
- difficulty is that, like previously proposed representations, our superquadric
lumps-of-clay representation becomes implausably complex when confronted
with the problem of representing, e.g., a mountain, crumpled newspaper, a
bush or a field of grass. This makes the technique ill-suited to solving the
problem of representing classes of such objects, or determining that a parti-
cular object is a member of that class.

Why is it that such introspectively simple tasks turn out to be so hard?
Intuitively, the main source of difficulty is that there is too much information to

7 Descriptions that correspond to a possible formative history explicitly group together parts of a
form that have a similar causal history, i.e., that came about in the same manner. It appears that
such groupings have a strong tendency to continue to act as a simple whole. Why this should be
true is unclear; perhaps there are only a few basic categorics of physical interaction that all may be
characterized using the same dcfinition of “part.”
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deal with. Natural objects are amazingly bumpy and detailed; and classes of
such objects seem to include virtually infinite variability. There is simply too
much detail, and it is too variable. When we attempt to represent suctr objects
in a detailed, quantitative manner, we are forced to an unwieldy description.

Nor does it suffice to simply introduce error tolerances into the represen-
tation, e.g., a mountain is a cone * x. For not only is such a representation
misieading (do we really want to say that a cube is a sphere *(.2577), but it
does not allow for the ability to distinguish between a mountain (represented as
a cone *x) and a cone with a few dents in it (also represented as a cone *x).

Experiments in human perception suggest a way out of such problems. When
we view a crumpled newspaper (for instance), it seems that the description we
store is not accurate enough to recover every detail; rather, it seems that out of
the welter of image detail people abstract a few properties such as the gencral
“crumpledness’” and a few major features of the shape, e.g., the general
outline. The rest of the crumpled newspaper's structure is ignored; it is
unimportant, random. For the purpose of describing that crumpled newspaper,
then, the only important constraints on shape are the crumpledness and general
outline. .

People escape the trap of overwhelming complexity, it seems, by varying the
level of descriptive abstraction—the amount of detail captured—depending on
the task. In cases like the crumpled newspaper, or when recognizing classes of
objects such as “a mountain” or “a cloud,” the level of abstraction is very high.
Almost no specific detail is required, only that the crumpledness of the form
comply with the general physical properties characteristic of that type of
object. In recognizing a specific mountain, however, people will require that all
of the major features be identicai, although they typically ignore smaller
details. Even though these dctails are “‘ignored,” however, they must still
conform to the constraints characteristic of that type of object: we would never
mistake a smooth cone for a rough-surfaced mountain even if it had a generally
conical shape.

The fractal model of natural surfaces |34, 35| allows us to duplicate this sort
of physically meaningful abstraction from the morass of details encountered in
natural scenes. It lets us describe a crumpled newspaper by specifying certain
structural regularities—its crumpledness, in effect—and Icave the rest as variable
detail. It lets us specify the qualitative shape—i.e., the surface’s roughness—
without (necessarily) worrying about the details.

3.2.1. Fractal-based qualitative description

Many naturally occurring forms are fractals® [22,34-36|; Mandelbrot, for

8 The defining characteristic of a fractal is thal it has a fractional dimension, from which we get
the word “fractal.”
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instance, shows that fractal surfaces are produced by several basic physical
processes. One general characterization of naturally occurring fractals is that
they are the end result of any physical processes that randomly modifies shape
through local action, i.e., they arc a generalization of random walks and
Brownian motion. After innumerable repetitions, such processes will typically
produce a fractal surface shape. Thus clouds, mountains, turbulent water,
lightning and even music have all been shown to have a fractal form.

During the last two years we have developed these fractal functions into a
statistical model for describing complex, natural surface shapes [34, 35, 37, and
have found that it furnishes a good description for many surfaces. Evidence for
the descriptive adequacy of this model comes from several sources. Recently
conducted surveys of natural imagery [34-36], for instance, have found that this
model accurately describes how most homogencous textured or shaded image
regions change over scale (change in resolution). The prevalence of surfaces
with fractal statistics is explained by analogy to Brownian motion (the archetypical
fractal function): just as when a dust mote randomly bombarded by air
molecules produces a fractal Brownian random walk, the complex intcraction
of processes that locally modify shape produces a fractal Brownian surface.

For our current purposes, perhaps the most important fact is that once of the
parameters of this statistical model (specifically, the fractal dimension of the
surface) has been found to correspond very closely to people’s perceptual
notion of roughness [38,39]. We have becn able, for instance, to accurately
predict a surface’s perceptual smoothness or roughness on the basis of knowing
it's fractal statistics. The fractal model, therefore, gives us a way of qualitatively
describing surface shape [34, 35|.

The fractal model shows how we may use physically motivated statistical
description to abstract away from the overwhelming amount of detail present
in many natural forms. To be useful, however, we must combine the fractal
model’s notion of qualitative description by physically meaningful statistical
abstraction together with the quantitative descriptive abilities of the lump-of-
clay descriptive language developed in the previous sections.

3.2.2. Qualitative and quantitative description

We begin the task of unifying the fractal model's notion of qualitative descerip-
tion with the quantitative lump-of-clay description by considering the basic
properties of naturally occurring examples of fractal Brownian surfaces. Such
surfaces all have two important propertics: (1) each segment is statistically
similar to all others; (2) segments at dilferent scales are statistically indis-
tinguishable, i.e., as we examine such a surface at greater or lesser imaging
resolution its statistics (curvature, etc.}) remain the same. Becausc of these
invariances, the most important pariable in the description of such a shape is
how it varies with scale; in essence, how many large features there are relative
to the number of middle-sized and smaller-sized features. For fractal shapes
(and thus for many real shapes) the ratio of the number of features of once size to
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the number of features of the next larger size is a constant—a surprising fact
that derives from the property of scale invariance. The fractal model, thercfore,
leads us to a statistical characterization of a surface in terms of two paramceters:
the surface’s variance (amplitude), and the ratio between the frequency of
smaller and larger features (i.e., its fractal dimension).

We may, therefore, construct fractal surfaces by using our superquadric
“lumps” to describe the surface’s features; specilically, we can use the recursive
sum of smaller and smaller superquadric lumps to form a true fractal surface.
This construction is illustrated in Figs. 7(a)}(c).

We start by specifying the surface’s qualitative appearance—its roughness—
by picking a ratio r, 0 =< r =<1, between the number of features of one size to
the number of features that are twice as large. This ratio describes how the
surface varies across different scales (resolutions, spatial frequency channels,
etc.) and is related to the surface’s fractal dimension D by D= T +r, where T
is the topoligical dimension of the surface.

We then randomly place n’® large bumps on a planc, giving the bumps a
Gaussian distribution of altitude (with variance o), as seen in Fig. 7(a). We
then add to that 4n? bumps of hailf the size, and altitude variance o, as
shown in Fig. 7(b). We continue with 161” bumps of one quarter the size, and
altitude ¢r*, then 64n° bumps one-eighth size, and altitude &r® and so forth, as
shown in Fig. 7(c). The final result, shown in Fig. 7(c) is a true Brownian fractal
shape. The validity of this construction does not depend on the particular shape
of the superquadric primitives employed, the only constraint is that the sum
must fill out the Fourier domain. Diiferent shaped lumps will, however, give
different appearance or texture to the resulting fractal surface; this is an
important and as yet relatively uninvestigated aspect of the fractal model. Figs.
7(d) and 7(e) illustrate the power and generality of this construction; all of the
forms and surfaces in these images can be constructed in this manner.

When the placement and size of these superquadric lumps is random, we
obtain the classical Brownian fractal surface that has been the subject of our
previous research. When the larger components of this sum are matched to a
particular object, however, we obtain a description of that object that is exact
to the level of detail encompassed by the specified components. This makes it
possible to specify a global shape while rctaining a qualitative, statistical
description at smaller scales: to describe a complex natural form such as a
cloud or mountain, we specify the “lumps™ down to the desired level of detail
by fixing the larger elements of this sum, and then we specify only the fractal
statistics of the smaller lumps thus fixing the qualilative appearance of the
surface. Fig. 8 illustrates an example of such description. The overall shape is
that of a sphere; to this specified large-scale shape, smaller lumps were added
randomly. The smaller lumps were added with six ditTerent choices of r (i.e., six
different choices of fractal statistics) resulting in six qualitatively diflerent
surfaces—each with the same basic spherical shape.

The ability to fix particular “lumps’ within a given shape provides an elegant
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F1G. 7. (a)-(c) show the construction of a fractal shape by successive addition of smaller and
smaller features with number of features and amplitudes described by the ratio /r. All of the forms
and surfaces shown in (d) and (¢) (which are imagcs by Voss and Mandelbrot, see [22]) can be
generated in this manner.
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Fic. 8. Spherical shapes with surface crenulations ranging from smooth (fractal dimension =
topological dimension, r=0) to rough (fractal dimension * topological dimension. r=1}.

way to pass from a qualitative model of a surface to a quantitative one—or
vice versa. We can refine a general model of the class “a mountain™ to
produce a model of a particular mountain by fixing the position and size of the
largest lumps used to build the surface, while still leaving smaller details only
statistically specified. Or we can take a very specific model of a shape, discard
the smaller constituent lumps after calculating their statistics, and obtain a
model that is less detailed than the original but which is still gualitatively
correct,

4. Primitive Perception: Recognizing Instances of Models

During the last decade, the dominant view of human perception has been that
perception proceeds through successive levels of increasingly sophisticated
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representations until finally, at some point, information is transferred to our

general cognitive faculties. And indeed, there does scem to be a gradient of

sophistication in human perception, ranging from scemingly primitive in-
ferences of shapes, textures, colors, and the like, to the apparently mose
sophisticated inferences of chairs, trees, affordances’ and people’s emotions.

There is significant reason to believe, however, that this is not simply the flow

of information through successive levels of representation.

To summarize Fodor’s excellent and extended argument for this conclusion
[40]. we note that the sophisticated end of perception can involve virtually
anything we know, and seems to blend smoothly into general cognition—for
instance, we speak of perceiving abstract mathematical relationships or
pcople’s intentions. There is no principled reason to separate sophisticated
perccption from general-purpose reasoning. The characteristics of primitive
perception, however, are quite diffecrent from that of cognition:

- Informational encapsulation. Primitive perception proceeds without benelit
of intimate access to the full range of our world knowledge. Most visaal
illusions, for instance, cannot be dispelled merely by recognizing them as
illusions [41].

~ Limited extent. The body of knowledge on which primitive perception draws
is of quite limited extent, at least tn comparison to our conscious workd
knowledge. People of all cultures seem to share a common perceptual
framework [43]; it is this shared framework that makes possible any com-
munication at all.

~ Functional autonomy. Primitive perccption proceeds with little regard to the
particulars of the task at hand, under at most limited voluntary control. We
are capable of the same discriminations, regardless of purpose or task, cxcept
(perhaps) for a few very practiced tasks, e.g., birdwatchers discriminating
between different types of bird. This is not to say that we always do make
the same discriminations (we can, after all, focus our attention), but rather
that whenever we attend to a particular stimulus dimension we are always
capable of making the same discriminations.

Primitive perception is at least roughly the realm of pereeptual organization,

i.e., the pre-attentive organization of sensory data into primitives like texture,

color and form. Thus, although we often speak s if perception were a smooth

series of progressively more sophisticated inferences (c.g., Marr [10]), it is more
likely that there are separate, specialized mechanisms for primitive and sophis-
ticated perception.

This leads to a conception of our perceptual apparalus as containing two
distinct parts: the first, a special-purpose, perhaps innate mechanism that
supports primitive perception, and the second something that closely resem-
bles general cognition. Most of the time the sensory data are first examined by
the mechanisms of primitive perception to discover instances of rigidity,

? Affordances are the purpose(s) of an object.
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parallelism, part-like groupings and other evidences of causal organization,
thus providing an explanation of the image data in terms of generic formative
processes. The mechanisms of sophisticated perception then use specific,
learned knowledge about the world torefine this primitive, genericexplanationinto
a detailed account of the environment.

It should be noted, however, that for at lcast the most practiced dis-
criminations things seem to happen somewhat dilferently. When a percept,
even if of a very sophisticated nature, is highly practiced or very important it
appears that our minds build up a special-purpose mechanism solely for that
purpose. Consider, for instance, our incredible facility at recognizing our own
name, or the faces of familiar people. There may be, therefore, a sort of
“compiler” for building specialized routines for these oft-repeated, important
or time-critical discriminations. How much of our day-to-day perception is
handled by such special-purpose routines is very much an open question.

Primitive perception, by our definition, was first seriously addressed by the
Gestalt psychologists [4], who noticed that people scem to spontancously
impose a physically meaningful organization upon visual stimuli, through
grouping, figure/ground separation, and so forth. They found that the addition
of semantic context very rarely affects this spontaneous, pre-attenlive
organization of the image; somehow the visual system scems able to group an
image into the correct, physically meaningful parts before contextual know-
ledge is available.

The Gestalt psychologists described this spontaneous organization as being
governed by the principle of Pragnanz', however their lack of modern notions
of computation limited their ability to crisply define Pragnanz and thus
doomed them to a rather limited success. Nevertheless, their work paved the
way for the two-stage model of perception thal is enjoying widespread popu-
larity in academic circles today. The first stage, which we are describing here as
primitive perception, is spontaneous and pre-attentive. It carves the sensory
data into likely-meaningful parts, and presents them to the later stages of
perception. The second stage of perception, which we are calling sophisticated
perception, is very little (if at all} different from our general cognitive faculty—
including the ability to make very eflicicnt, “compiled™ routines, presumably
by combining the outputs of primitive perception.

4.1. Recognizing our medeling primitives

It is our goal to provide the beginnings of a thcory for our faculty of
pre-attentive, primitive perception: to present a rigorous mathematical
definition for the vague notion of “a part” and to cxplain how we can,
Gestalt-like, carve an image up into meaningful ‘“‘parts”™ without nced of
semantic context or specific a priori knowledge. We have aiready described a
representation that is competent to describe a wide range of natural forms, and

"Pragnanz is normally translated as meaning “gooduess of form.”
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whose primitive elements seem to correspond closely to our naive notions of
perceptual parts. What remains to be donc is to show that these descriptive
primitives can be recovered [rom the image data.

The major difficulty in recovering such descriptions is that image data are
mostly a function of surface normals, and not directly a function of the surface
shape. This is because image intensity, texture anisotropy, contour shape, and
the like—the information we have about surface shape—is largely determined
by the direction of the surface normal. To recover the shape of a general
volumetric primitive, therefore, we must (typically) first compute a dense depth
map from information about the surface normals. The computation of such a
depth map has been the major focus of eifort in vision research over the last
decade and, although the final results arc not in, the betting is that such depth
maps are impossible to obtain in the gencral, unconstrained situation. Even
given such a depth map, the rccovery of a shape description has proven
extremely difficult, because the parameterization of the surface given in the
depth map is generally unrelated to that of the desired description.

Because image information is largely a function of the surface normal, one of
the most important properties of supcrquadrics is the simple “dual” relation
between their surface normal and their surface shape. It appears that this dual
relationship can allow us to form an overconstrained estimate of the 3-D
parameters of such a shape from noisy or partial image data, as outlined by the
following cquations.

The surface position vector of a superquadric with length, width and breadth
a,, a, and a, is (again writing cos = C,sinw = §)

a,C'CY
X(n, w)=| a,C'S; (N
aJS;'_

and the surface normal at that point is
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From (1) and (3), then we have
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We may also derive alternative expressions for tan w as follows:
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Combining these expressions for tan w we obtain
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dr _ —kéy (X)H_ (15)

dx x* \x

This gives us two equations relating the unknown shape parameters to image
measurable quantities, i.e.,

L4 (16)
dr/dy ¢
and
T__T*
dridx & (7

Thus (16} and (17) allow us to construct a lincar regression to solve for center
and orientation of the form, as well as the shape parameter &,, given only that
we can estimate the surface-tilt direction .

4.1.1. Overconstraint and reliability

Perhaps the most important aspect of these equations is that we can form an
overconstrained estimate of the 3-D paramcters, we can check that the
parameters we estimate are correct. This property of overconstraint comes
from using models: when we have used some points on a surface to estimate
3-D parameters, we can check if we are correct by examining additional points.
The model predicts what these new points should look like; if they match the
predictions, then we can be sure that the model applics and that the parameters
are correctly estimated. If the predictions do not match the new data points,
then we know that something is wrong. The ability to check your answer is
perhaps the most important property any vision system can have, because only
when you can check your answers can you build a reliable vision systein. And it
is only when you have a model that relates many dilferent image points (such
as a model of how rigid motion appears in an image scquence, or a CAD-CAM
model, or this 3-D shape model) that you can have the overconstraint needed
to check your answer.

One other aspect of (16) and (17) that descrves special note is that the only
image measurement needed to recover 3-D shape is the surface tilt 7, the
component of shape that is unaffected by projection and, thus, is the most
reliably estimated parameter of surface shape. It is, for instance, known exactly
at smooth occluding contours and both shape-from-shading and shape-from-
texture methods produce a more reliable estiniate of r than of slant, the other
surface shape parameter. That we need only the (relatively) casily estimated
tilt to estimate the 3-D shape parameters makes robust recovery of 3-1D shape
much more likely.
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When we generalize these equations to include unknown orientation and
position parameters for the superquadric shape, we obtain a new set of
nonlinear equations that can then be solved (in closed form) for the unknown
shape parameters g, and &,, the center position, and the three angles giving the
objects orientation. Once these unknowns arce obtained the remaining un-
knowns (a, a,, and a,, the three dimensions of the object) are easily obtained.

For the case of rotation and translation in the image plane, the equations
become:

x*=Cylx —xy) + 5,y = y). = =S~ )+ Cly — y) (18)

where 8 is the rotation, x,, y, the translation, and (x*, y™) the new rotated and
translated coordinate system. The tilt 7 then becomes

y: . (—Suxn + C'Hyn)
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Our estimates of tilt from local image information typically have considerable

noise in them [18,37,44]; in order to still obtain
dimensional shape we will formulate the problem
parameters as a linear regression. Collecting the

good estimate of three-
of recovering the shape
image-measurable terms

together (in square brackets), this equation becomes
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This equation, then, can be used for a lincar regression to solve for the un-
known coefficients (in curved brackets). We have seven unknown cocefficients
and so we require tilt information at as few as seven points in order to solve for
all these unknowns. By combining this cquation together with the equivalent
version derived from (17) we can obtain closed form solutions for the center of
the object (x,, y,), the shape parameter &, and the oricntation 6. In fact. things
are somewhat better than this, beecause we have two such equations at each
point (one for dx and one for dy) so that fewer points are actually required.
The small number of points required opens up the possibility of segmenting
images in terms of the parameters of the 3-D surface.

At occluding contours the situation is better yet, because we also know that
yi+x§= 1, and considerable extra constraint is available. This formulation,
therefore, reflects the fact that contour information is more powerful than
shading or texture information. One of the more interesting aspects of this
approach is that contour information and information from shading or texture
contribute toward estimating shape in exactly the same manner—by providing
information about surface tilt—and therefore we may combine information
from all of these sources by use of the same sct of cquations, those derived
from (16) and (17).

Because we have formulated the problem of primitive perception as one of
recognizing instances of the “parts” found in a representational vocabulary, we
can frame the problem as one in statistical decision thcory: we have a range of
alternatives that we entertain, and use image data to decide among the
alternatives. This gives us a rigorous framework for integrating information
from motion, stereo, elc., together with contour, shading and texture infor-
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mation without having to make further assumptions. This is in considerable
contrast to approaches that try to apply strong, unverifiable assumptions about
the nature of surfaces (e.g., that all surfaces are “smooth™) in order to integrate
various information sources. Here we are attempting to collect a vocabulary
of models that span the space of shape possibilities, so that we can replace
unverifiable assumptions with verifiable models. We want perception to pro-
ceed by making an overconstrained, statistical determination that a particular
model is applicable (rather than simply making an assumption), and then
estimate the parameters of that model. If our vocabulary of shape does in fact

y -2 view of scene

A

sketch of sgene

F1c. 9. (a) A half-toned version of an image of a superquadric with shape parameters &, ;> =1.5.
{b) The surface tilts estimated using the local shape-lrom-shading/tcxture algorithm descrihed in

[18, 37]. (e) Twoviews of the 3-D shape estimated by use of equations {1 6}und (17), using the tilt estimates
shown in (b).
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cuver the range of shape that actually occurs, then we will have made the hest
shape estimate possible with the available image data.

Equation (23) does not reflect the Full sophistication possible in statistical
decision theory; a regression using this equation results i a maximum likeli-
hood estimate of compound paramcters such as €, and €C,S, rather than
estimates of the individual parameters £ and #. Still, the main power of the
approach remains. Our modeling primitives provide us with a parameterized
range of hypotheses that we can choose among using cstablished statistical
tools, thus providing us a rigorous framework for integrating contour with
shading and texture information, as well as allowing us to include a priori
information that we may have gained from previous vicws. The power of this
framework has been illustrated by the work of Ferrie and Levine [44] who,
using a simpler shape vocabulary consisting of cllipsoids and cylinders, have
combined our local shape-from-shading technique [ 18] with motion information
to accurately recover 3-D shapc.

Although the equations presented here are only for rotations in the image
plane, the general equations are similar, aithough somewhat more complicated.
As in the simpler case, information at relatively few points'' is required in
order to soive for the unknowns, and the situation is considerably better along
occluding contours. :

Fig. 9 illustrates the process of recovering 3-D shape using this technique.
Fig. 9(a) shows a half-toned version of an image of a supcrguadric with shapc
parameters g,, £,= 0.5. To this image, we applied the local shape-from-shad-
ing/texturc technique developed by Pentland [18, 37]. The estimation technique
employs second-derivative filters with local support to make cstimates of
surface slant and tilt, with the estimates of tilt being more reliable than the
estimates of slant [18, 44]. Fig. 9(b} shows a vicw of the surface tilt (i.c.. y /x )
recovered from the continuous 8-bit image of the shape illustrated by Fig. 9(a);
in this figure the image x-axis runs left-right and the y-axis runs up-down.
From this estimated tilt surface we can use (16) and (17) to cstimate Lhe center
of the shape, the shape parameter g,, and the width and breadth of the shape.
Fig. 9(c) shows two views of the recovered shape; it can be seen that in this
simple case a good estimate of the 3-D shapc can be made. It appcars, then.
that (16) and (17) offer a good hope for recovering surface shape; in our future
research we hope to extend thesc preliminary results to natural imagery.

4.2. Model-based vision, the blocks world, and our effort

The most successful (i.e., working, practical) cfiorts in machine vision have all
been accomplished within two paradigms that are gencrally lumped together
under the rubric of “model-based vision.” The first of these paradigms is to

"Depending on the exact formulation, 15 points are required.
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take a CAD-CAM-type model of a specific object, find configurations of image
features that uniquely determine identity and orientation of the object, and
then search the image for those configurations. A similar, but fundamentally
quite different “model-based vision” paradigm was first employed in the
blocks-world research during the 1960s [45], and more recently in such work as
the 3-D mosaic program of Hermann and Kanade |24|. In this sccond
paradigm, the models are of the parts that make up specific objects, rather than
a model of the entire object, and the goal is to identify those component parts.
Once the parts have been identified and their spatial layout determined, one
can ask if this configuration of parts is an object that has been seen before. This
latter approach has the very significant advantage that it can learn new object
descriptions by example: it can look at a new object, identify the objeet’s parts,
and then use that part-wise description to build up a general model of the
specific object in a manner similar to that proposced by Winston [46, 47)..

Because this second, find-the-parts approach to modcl-based vision can learn
descriptions of novel objects, it has the potential to support general-purpose
vision. The major limitation on the success of this approach is the availability
of part models that are individually recognizable and which have the expressive
power to describe everything within the domain of interest. What we are
attempting to do is develop a vocabulary of just such individually recognizable
part models. One may, therefore, think of the rescarch described here as
returning to the blocks world, but with models of 3-D structure that are
tremendously more sophisticated than simple blocks or polyhedra.

We believe that the modeling language presented here has a good chance of
being able to handle most of the forms found in the rcal world. The images in
this paper demonstrate the expressive power of this new vocabulary of models
(their cartoon-like nature is primarily due to the lack of surface texiuring), and
the mathematics in this section of the paper demonstrate the plausibility of
recovering such part descriptions from sparse and partial image data. Even if it
should turn out that our models aren’t yet sophisticated cnough to deal with
the complexity of real world, we will have at least made major progress
towards bridging the gap between the present state of the art and that needed
to construct a general-purpose, real-world vision system.

5. Using the Representation

The particular models of the world that perception uses to interpret scnsory
data induce a profound organization on all of our conceptual structures. If we
stand in the center of Stonehenge, we can see either a collection of pillars,
several irregular walls of pillars, or concentric circular structures with regularly
spaced pillars. This is the familiar Gestalt phenomenon of grouping; what is
important about it is that which grouping you spontancously see strongly
influences what hypotheses you entertain when trying to deduce, for instance,
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the purpose of Stonehenge. Examples such as this demonstrate that the manner
in which perception “carves up” the world—that is, ils models of the world—
strongly determine the way in which we think about the world.

The issue of pereeptual models is, therefore, of more than passing interest to
those interested in cognition. It seems reasonable that if we are 1o develop
machines that are able to display common-sense reasoning abilitics, for in-
stance, we must have spatial representations that are at least roughly
equivalent to those people employ in organizing their picture of the world.
Similarly, if we are ever to communicate with machines about our sharcd
environment we must devclop spatial representations that are at least isomor-
phic to the representations that we use. We must have a representation that
captures the same sorts of distinctions we make when we carve objects into
parts.

Because communication depends upon having a shared representation of the
situation, we can use man—machine communication as a fairly sensitive test of
whether a particular representation captures the notions of difference and
similarity that humans employ. The empirical (and so far informal) finding that
the organization of our shape descriptions correspond closely with the human
perceptual organization is, as a conscquence, quite interesting: the represen-
tation seems to offer exciting possibilities for llexible, ¢ffective man—machine
communication. It was, therefore, of great interest to test how clfectively we
can use the representation described here as a basis for communication
between a computer and its operator concerning image data and 3-D shape.

5.1. Communicating about a digital terrain map

As a first experiment we took the problem of communicating with a computer
about a digital terrain map, as might be donc in guiding a stereo compilation
process or when plotting a path through the terrain. Fig. 7 showed how a
mountain-like surface can be built up from the combination of progressively
smaller primitives. We can also take a real surface, such as the digital terrain
map of Yosemite Valley shown in Fig. 10(a) and decompose it into a canonical
lump deseription by use of a minimum-complexity criterion, that is, we attempt
to account for the shape with thc fewest number of component parts as is
possible (see [49]). One simple mechanism for approximating this decom-
position is to form a Laplacian pyramid [50|, examine the entries in this
pyramid to find those points that most closcly correspond to the shape of a
single “lump” (by looking at the neighbors of the point in both space and
scale), subtraet off that lump from the original form. We then repeat this
procedure until no entries remain in the pyramid.

If we want to have a “sketch” of the DTM surface (a simplificd description
that we can use for communication), we can use estimates of the surface’s
variance and fractal dimension to set an acceptance threshold, so that our
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decomposition procedure finishes by taking only the 50 or so most prominent
surface features. To adequately characterize a DTM we have found that we
need to look for only two types of primitive elements: one, a vertically oriented
symmetrical peak, and two, a horizontally oriented elongated ridge or valley.
The fractal statistics of the surface characterize how features of the surface
change across scale and, therefore, gives us the information needed to adjust
the acceptance threshold for differcnt scales, so that the prominence of fcatures

FiG. 10. (a) A digital terrain map of Yosemite Valley, which is automatically decomposed into a
“sketch,” a description in our representational system that contains terms (“lumps™) that cor-
respond roughly to “peaks,” *“valleys,” and *“ridges,” so Lhat the parts of this description
correspond closely with the perceptual organization that we inipose on the scene. This is illustrated
in {b), (c) and (d), which show a person pointing to a part of the image, and the computer using this
sketch to determine what part of the terrain is being gestured at, and highlighting the **part”
referred to by covering it with cross-hatching. This decomposition of the scene into percepluaily
salient “parts” thus fulfills a critical requirement for effective man-machine communication: similar
representations of the scene. )
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accepted at one scale corresponds to the prominence of smaller- or larger-scale
features. When we do this, the result is a description that organizes the pixel
data into its most prominent components at all scales, in a way that we have
found corresponds closely with our naive pcreceptual organization of the
surface—e.g., organizing the surface into peaks ridges, valleys, and the like.

The ability to structure the pixel data in a manner that corresponds to the
perceptual organization we impose upon the data allows us to support human—
computer communication about the scenc. It allows us to point to a part of the
scene, say “that thing” and have the machine he able to make a good puess
about what part of the surface we want to indicate, as opposed to the current
state of the art in which we have to carefully outline the part of the surface that
we want manipulate. 7

This sort of communication is illustrated in Figs. 10(h), (c) and (d), which
shows the operation of a program we have constructed that performs this
parsing of a digital terrain map (DTM), identifies the 50 or so most prominent
perceptual ‘“parts,” and then allows the user to intcract with the DTM by
simply pointing to peaks, valleys, ridges and so forth. These figures show a user
pointing, the program interpreting what “feature” the user intended to in-
dicate, and then highlighting that feature by cross-hatching it. The highlighted
feature can then be edited to improve the DTM, defincd as a primitive object
in a path planning calculation, or used in whatever manner the user’s purpose
demands. As these figures illustrate, we have found a good correspondence
between this program’s structuring of the image and the structure people
impose on the image.

5.2, Building 3-D models

One other example that illustrates using the representation to facilitate man—
machine communication is the 3-D modeling system called ““SuperSketch™ that
was used to make most of the images in this paper. In this Symbolics-3600-
based modeling system users create “lumps,” change their squareness/round-
ness, stretch, bend, and taper them, and make Boolecan combinations of them
in real time by moving the mouse through the relevant parameter space,
controlling which parameter is being varied by using the mouse buttons.
Because these forms have an underlying analytical form, we can use fast,
qualitative approximations to accomplish hidden-surface removal, intersection
and image-intensity calculations in real time—something that could not be
accomplished on a Symbolics 3600 if a polygon-based description were
employed. “Real time” in this casc means that a “lump” can be moved,
hidden-surface removal accomplished, and drawn as a 200-polygon linc draw-
ing-approximation in one eighth of a second, and a complex, full coloyr image
such as Fig. I can be rendered in approximately 20 scconds.

Because the primitives, operations and combining rules used by the com-
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puter are very well matched to those of the human opcerator, we have found
that interaction is surprisingly effortless: it took a rclatively unskilled operator
less than a half hour to assemble the {ace in Fig. 6, about ten minutes to create
the lobster in Fig. 3, and about four hours total to make Fig. 1. This is in rather
stark contrast to more traditional 3-D modecling systems that might require
days or weeks to build up a scene such as shown in Fig. |. This performance,
perhaps more than any other statistic that could be given, illustrates how the
close match between this representational system and the perceptual organiza-
tion employed by human operators facilitates clfective man—-machine com-
munication.

6. Summary

To support our reasoning abilities perception must recover environmental
regularities—e.g., rigidity, *“‘objectness,” axes of symmetry—{or later usc in
cognitive processes. Understanding this recovery of structure is critically im-
portant because the structural organization that perception delivers to cog-
nition is the foundation upon which we construct our picture of the world;
these regularities are the building blocks of ail cognitive activities.

To create a theory of how our perceptual apparatus can produce meaninglul
cognitive building blocks from an array of image intensities we require a
representation whose elements may be lawfully rclated to important physical
regularities, and that correctly describes the perceptual organization pcople
impose on the stimulus. Unfortunately, the representations that are currently
available were originally developed for other purposes (c.g., physics, engincer-
ing) and have so far proven unsuitable for the problems of perception or
common-sense reasoning.

For instance, the complexity of standard descriptions for such common
natural forms as clouds, human faces, or trees has been a fundamental block to
progress in computational psychology, artificial intclligence and machine vision.
It is a fundamental result of mathematics that onc cannot recover 3-D shape
descriptions from an image when the number of paramecters to be recovered is
greater than the number of pixels in the image. How, (hen, can we hope to
understand perception when our representational tools force us into the
uncomfortable position of knowing a priori that we cannot recover the desired
descriptions from image data? Further, even if we cowdd recover such descrip-
tions, how can we hope to understand common-sense reasoning if forced to use
such overly complex descriptions?

In answer to these problems we have presented a representation that has
proven competent to accurately describe an extensive variety of natural forms
(e.g., people, mountains, clouds, trees), as well as man-made forms, in a
succinct and natural manner. The approach taken in this representational
system is to describe scene structure at a scale that is more like our naive
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perceptual notion of *“a part™ than the pointwise descriptions typical of current
image understanding research, and to usc a description that reflects a possible
formative history of the object, e.g., how the object might have been con-
structed from lumps of clay.

Each of the component parts of this representation—superquadric “‘lumps,”
deformations, Boolean combination, and the recursive fractal construction—
have been previously suggested as elements of various shape descriptions,
usually for other purposes. The contribution of this paper is to bring all of
these separate descriptive elements together, and employ them as a represen-
tation for natural forms and as a theory of perceptual organization. In parti-
cular, we believe that the important contributions of this paper arc the
following.

(1) We have demonstrated that this process-oriented representational system
is able to accurately describe a very wide range of natural and man-made forms
in an extremely simple, and therefore useful, manner. Further, the represen-
tation can be used to support fast, qualitative approximations to dectermine,
e.g., intersection, appearance or relative position. Such qualitative reasoning is
employed in SuperSketch allow real-time movement, deformation, Boolean
combination, hidden-surface removal, intersection and rendering.

(2) We have found that descriptions couched in this representation are
similar to people’s (naive) verbal descriptions and appear to match people’s
(naive) perceptual notion of *“‘a part”, this correspondence is strong evidence that
the descriptions we form will be good spatial primitives for a thecory of
common-sense reasoning. Additionally, we hope that this descriptive system will
provide the beginnings of a rigorous, mathematical treatment of the still
vaguely defined subject of human perceptual organization.

(3) The part-model approach to perception makes the problem of recovering
shape descriptions overconstrained and thercfore potentially extremely reli-
able, while still providing the fexibility to learn new object descriptions.
Toward this end we have shown that our current descriptive vocabulary is
capable of describing a wide range of natural forms, and that the primitive
elements of this language can be recovered from partial image data in an
overconstrained and apparently noise-insensitive manner.

(4) And finally, we have shown that descriptions framed in the representation
have markedly facilitated man-machine communication about both natural and
man-made 3-D structures. [t appears, therefore, that this representation gives
us the right ““control knobs" for discussing and manipulating 3-D forms.

The representational framework presented here is not complete. It seems
clear that additional process-oriented modcling primitives, such as branching
structures [21] or particle systems [51], will be required to accurately represent
objects such as trees, hair, fire, or river rapids. Further, it seems clear that
domain experts form descriptions dilferently than naive observers, reflecting
their deeper understanding of the domain-specific formative processes and
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their more specific, limited purposes. Thus, accounting for expert descriptions
will require additional, more specialized models. Nonetheless, we believe this
descriptive system makes an important contribution toward solving current
problems in perceiving and reasoning about natural forms, by allowing us to
construct accurate models that are still simple enough to be useful, and by
providing us with the basis for more effective man-machine communication.

ACKNOWLEDGMENT

1 would like to thank Andy Witkin for his collaboration in developing the basic elements
of this approach to perception, and for his help in refining my ideas about fractals and
superquadrics. | would also like to thank David Heeger, Oscar Firschein, Bob Bolles and Fracy
Heibeck for their help and criticism in the writing of this manuscript.

This research was made possible by National Science Foundalion, Grant No. DCR-83-12766, by
Defense Advanced Research Projects Ageney contract no. MDA 903-8B3-C-0027, and by a grant
from the systems Development Foundation.

REFERENCES

—

. Thompson, D'Arcy, On Growth and Form (Univcrsity Press, Cambridpe, UK., 2nd ed., 1942},

. Stevens, S., Patterns in Nature (Atlantic-Little, Brown Books, Boston, MA, [974).

3. Rosch, E., On the internal structure of perceptual and semantic calegories, in: T.E. Mouore
(Ed.), Cognitive Development and the Acquisition of Language (Academic Press, New York,
1973).

4. Werthcimer, M., Laws of arganization in perceptual forms, in: W.[D. Ellis (Ed.), A Source Book
of Gestalt Psychology (Harcourt Brace, New York, 1923).

5. Johansson, G., Configurations in Event Perception (Almyvist and Wiksell, Stockholm, 19501,

6. Marr, D. and Nishihara, K., Representation and recognilion of the spatial organization of
three-dimensional shapes, Proc. Roy. Soc. London B 200 (1978) 269-294.

7. Nishihara, H.K., Intensity, visible-surface and volumetric representations. Artificial Intelligence
17 (1981) 265-284.

8. Binford, T.O., Visual perception by computer, in: Proceedings IEEE Conference ont Systents
and Control, Miami, FL, 1971.

9. Gibson, J.J., The Ecological Approach to Visual Perception (Houghton Mifilin, Boston, MA,
1979).

10. Marr, D. Vision (Freeman, San Francisco, CA, 1982).

11. Agin, G.J. and Binford, T.Q., Computer dcscriptions of curved objects, IEEE Trans. Compint,
25 (1976) 439449,

12. Nevatia, R. and Binford, T.O., Description and recognition of curved objects Arificial
Intelligence 8 (1977) 77-98.

13. Badler, N. and Bajacsy, R., Three-dimensional representations for computer graphics and
computer vision, Comput. Graphics 12 (1978) 153-160.

14. Brady, J.M., Describing visible surfaccs, in: A. Hanson and E. Riseman (Eds.), Compuier
Vision Systems {Academic Press, New York, 1978).

15. Brooks, R., Model based 3-D interpretation of 2-D images, in: A. Pentland (Ed.), From Pixels to
Predicates (Ablex, Norwood, NJ, 1985).

16. Boiles, B. and Haroud, R., 3DPQ: An inspection system, in A, Pentland (Ed.), From Pixels
to Predicaies (Ablex, Norwood, NJ, 1985).

17. Barrow, H.G. and Tenebaum, J.M., Recovering intrinsic scene characteristics from images, in:

A. Hanson and E. Riseman (Eds.), Computer Vision Systems (Academic Press, New Yark,

1978).

[x8)



330 : AL PENTLAND

26.

3o,

L

32.

3s.
39,

40,
41.

42.
43.

. Peathind, A.. Local analysis of the image, 1EE Trans. Pattern Anal. Machine Intelligence 6

(1984) 170-187.

. Witkin, A.P. and Tenchaum, J.M., On pereeptual organization, in: A, Pentland (Ed.), From

Pixels to Predicates (Ablcx, Norwood, NJ, 1Y8S).

. A. Penuand and A. Witkin, On perceptual organization, in: Proceedings Second Conference on

Perceptual Organization, Pajaro Dunes. CA, 1984,

. Smith, A.R., Plants, fractals and formal languages, Comput. Craphics 18 (3) (1884) =11,
. Mandelbrot, B.B., The Fractal Geometry of Nattire (Freeman, San Francisco, CA, [U82).
. Georgeff, M.P. and Wallace, C.S., A general scelection eriterion for inductive inferenee, in:

Proceedings Sixth European Conference on Ariificial huelligence, Pisa, Italy, 1984,

. Herman, M. and Kanade, T., The 3-D mosaic scene understanding systems, int AL Pentland

(Ed.), FFrom Pixels to Predicates (Ablex, Norwood, NJ, 1985).

. Konderink, J.J. and Van Doorn, A, The shape of simoath objects and the way contours end,

Perception 11 (1982) 129-137.
Konderink, 1.J. and Van Doorn, AL, The internal representation of solid shape with respect
to vision, Biol. Cybernet, 32 (1979) 211216,

. Hoffman, 1. and Richards, W.. Parts of recopuition. in: A, Pentland (Bd.), From Pivels 1o

Predicares {Ablex, Norwood, NI, 1985).

- Barr, A, Superquadrics and angle-preserving transfonnmions. fEE Compur. Cirraplies Appl. 1

(1981) 1-20.

. Kauth, R., Pentland, A. and Thomas, G., BLOB: an ansopervised clusiering approach 1o

spatial grouping in: Proceedings Fleventh hnternationad Symmpositon on Remote Sensing of the
Environment, Ann Arbor, M1 1977,

Hobbs, J. Final Report on Commonsense Summer, ‘Teeh. Note 370, SR Artificial Tntelligencee
Center, Menlo Park, CA, 1985,

Barr, A.. Global and local deformutions of solid primitives, Compue. Graphios 18 {3) (1984)
21-30.

Hollerbach, J.M., Fhierarchical shape deseription of objects by selection and modification of
prototypes, Ph.D. Theses, Al Tech. Rept. 346, MIT, Cambridge, MA, 1975,

. Hayes, P, The second naive physics manifesto, in: 1. Hobbs and R, Moore (Eds.). Formal

Theories of the Commonsense World (Ablex, Norwood, NJ, 1985).

. Pendand, A., Fractal-based description of matural scenes, T Trans, Pattern Anal. Machine

Intelligence 6 (1984) 661674,

. Pentland, AL, Fractal-basced description in: Proceedings Fighth fruernational Joint Conference on

Artificial Intelligence, Karlsruhe, L.R.G. (1983) 973-951.

. Medioni, G. and Yasumolo, Y., A note on using the fractal dimension for segmentation, 10

Computer Vision Workshop, Annapolis, MDD, 1984,

. Penlland, AL, Shading into texture in: Proceedings Fourth National Conference on Artificial

Intellivence, Austin, TX (1984) 269-273.

Pentlund, A., Fractals: a inodel for both texture and shading, Optic News (October, 1984) 71,
Pentland, A., Perception of three-dimensional textures, fnvestigative Opthamology and Visual
Science 25 (3) (1984) 201.

Fodor, J., Modularity of Mind: An Essay on Faculty Psychology (MIT Press, Cambridge MA.L
1982), '

Gregory, R.L,, The buelligent Eye (McGraw-Hill, New York, [970).

Leyton, M., Perceptual organizalion as nested control, Biof. Cybernet. ST {198) 11153,
Held, R. and Richards, W., (Eds.) Recent Progresy in Perception, Readings from Sciemtific
American (Freeman, San Francisco, CA, 1975). '

. Ferrie, F.P. and Levine, M.D., Piccing together the 3-1 shape of moving objects: an avervicw,

in: Proceedings IEEE Conference on Vision und Pattern Recognition, Sun Francisco, CA 1985,

. Roberts, L., Machine perception of three-dimensional salids, in: LT, Tippet, ¢t al. (Eds.),

Optical and Electrooptical Infonnation Processing (MU Press. Combridge, MA, 1965).



REPRESENTATION OF NATURAL FORM a3l

46.

47.

48.

49,
50.

5l

Winston, P.H., Learning structural deseriptions from cxiamples, in: P.H. Winsion (Fd.),
The Psychology of Computer Vision (McGraw-Hill, New York, 1975),

Winston, P.. Binford. T., Katz, B. and Lowry, M.. Learning physical deseriptions from
functionud definitions, cxamples, and precedents, in: Proceedings Third National Confercnce
on Artificial Intefligence, Washingion, DC (1983) 433-439.

Davis, E., The MERCATOR representation of spatial knowledge, in: Proceedings Eighth
International Joint Conference ont Artificial Intelligence, Karlsruhe, F.R.G. (1983) 295-301.
Pentland, A., On describing complex surfaces, fmage and Vision Computing 3(4) (1985) 1-15,
Burt, P.J. and Adelson, E.H., The Laplacian pyramid as a compact image code, [EEFE Trarns.
Communications 31 (1983) 532-540.

Reeves, W.T., Particle systems—a Lechnique for modeling a class of fuzzy objects, ACM
Trans. Graphics 2 (2) (1983) 91-108.

Received August 1985




s





